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Abstract Uncertainty was introduced into the chemical de-
scriptors of 11 datasets by conformational analysis in order
to incorporate three-dimensional information and to investi-
gate the resulting predictive performance of a state-of-the-
art machine learning method, random forests, for binary
classification tasks. A number of strategies for handling
uncertainty in random forests were evaluated. The study
showed that when incorporating three-dimensional informa-
tion as uncertainty into chemical descriptors, the use of
uniform probability distributions over the range of possible
values, in conjunction with fractional distribution of com-
pounds clearly outperforms the use of normal distributions
as well as sampling from both normal and uniform distribu-
tions. The main conclusion of this study is that, even when
distributions of uncertain values are provided, the random
forest method can generate models that are almost as accu-
rate from the expected values of these distributions alone.
Hence, there seems to be little advantage to using the more
elaborate methods of incorporating uncertainty in chemical

descriptors when using random forests rather than replacing
the distributions with single-point values. The results also
show that random forest models with similar performances
can also be generated using three-dimensional descriptor
information derived from single (lowest-energy or Corina-
derived) conformations.
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Introduction

The development of pharmaceutical drugs is a costly and
time-consuming procedure [1]. Therefore, it has become pop-
ular to “front-load” the drug development process with infor-
mation; in other words, to streamline this process early on,
particularly during the lead identification and lead optimiza-
tion phases, through the appropriate use of data [2]. One
aspect of front-loading involves the prediction of various
biopharmaceutical properties (e.g., solubility and ADMET
properties). For predictive models to be useful, a number of
criteria need to be fulfilled, such as robustness, good predic-
tive performance, an appropriate applicability domain, and, in
many cases, transparency and interpretability [3].

Most often, a predictive in silico model is formulated by
employing a statistical or machine learning algorithm to find
a mapping from a particular compound, represented by a set
of molecular descriptors, to the output (e.g., a specific
biological activity) using available data. Traditionally, each
molecular descriptor takes an exact numerical or nominal
value. In many cases (e.g., when representing the number of
atoms or bonds in a compound) this makes perfect sense, as
there is no uncertainty associated with the value. However,
other types of descriptors (e.g., logP and other charge-based
variables) are not exact: each descriptor value comes with an
associated uncertainty, which often is expressed in terms of
a standard deviation. Information of this kind is not, how-
ever, typically considered in current in silico predictive
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models, usually only the expected (or most likely) value is
used. Uncertainty also arises when properties of a molecule
are derived from multiple conformations of that molecule;
such properties include dipole moments and other electronic
properties, as well as (charged) surface areas of various
kinds. Thus, a single compound with multiple conforma-
tions can have a set of values for a particular descriptor, as
the value depends on the specific conformation considered.
Since different compounds often have different numbers of
conformations, there is no straightforward way of
transforming these sets of values into fixed-length feature
vectors without losing information or introducing restric-
tions that come from ordering the conformations. A com-
monly adopted approach is therefore to represent these
multiple values by a single value, which potentially results
in a significant loss of information, although attempts have
previously been made to sample multiple values [4, 5].

Recently, there has been increasing interest in ma-
chine learning methods that are able to learn from
uncertain data (such as that mentioned above). Various
standard learning algorithms have been adapted to deal
with uncertain input features, including support-vector
machines [6], decision trees [7, 8], random forests [9,
10], artificial neural networks [11], Bayesian classifiers
[12], and rule-based approaches [13–15].

The aim of the study described in the present paper was
to investigate whether anything could be gained from
representing feature values derived from multiple conforma-
tions as uncertain features, in order to potentially take ad-
vantage of recent developments in machine learning relating
to the handling of such uncertainties.

Nine publicly available and two proprietary (from
AstraZeneca) datasets (on solubility and hERG) were used
in the study (see Table 1 for a list of names and endpoints, as
well as references and supporting information for SMILES
and the activity classes of the public datasets).

The three-dimensional structures were generated usingCorina
(Corina version 3.50, Molecular Networks GmbH, http://
www.molecular-networks.com), and subsequent conformational
analyses were performed using low-mode sampling with the
default settings within Macromodel (Macromodel version 9.5,
Schrödinger, LLC, http://www.schrodinger.com). The ten
lowest-energy conformations with sufficient dissimilarity were
kept for later in order to generate descriptors for each compound
under investigation. Dissimilarity was determined by calculating
the root mean squared deviation (RMSD) between pairs for all
the corresponding atoms within the investigated compound of
interest. If the RMSD value did not exceed 1.0 Å, the conformer
was considered to be identical to already selected conformers.

Dragonwas used to calculate three-dimensional descriptors
(Dragon version 1.4.2, Talete s.r.l., http://www.talete.mi.it).
The 682 computed molecular descriptors were physicochem-
ical in nature. For a list of the calculated Dragon descriptor
sub-blocks, see Table 2.

The datasets in this work concern two-class (binary)
classification tasks with, in most cases, balanced classes
(i.e., the two classes contain approximately the same num-
ber of compounds).

The ten lowest-energy conformations retained from the con-
formational analysis for each compound were used, and de-

Table 1 Data set characteristics
Dataset End point No. of compounds Reference

ace Angiotensin converting enzyme 114 [20]

ache Acetylcholinesterase 111 [20]

ames Ames test 6,512 [21]

bzr Benzodiazepine receptor 163 [20]

cox2 Cyclooxygenase-2 322 [20]

dhfr Dihydrofolate reductase 397 [20]

gpb Glycogen phosphorylase B 66 [20]

hERG hERG ion channel inhibition 4,667 [22]

solubility Solubility in buffer at pH7.4 7,493 [23]

therm Thermolysin 76 [20]

thr Thrombin 88 [20]

Table 2 Dragon descriptor sub-blocks

Dragon descriptor sub-block Sub-block
number

Number of
descriptors

Geometrical descriptors 12 74

RDF descriptors 13 150

3D-MoRSE descriptors 14 160

WHIM descriptors 15 99

GETAWAY descriptors 16 197

AlogP, MlogP 20 2
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scriptor uncertainty was introduced by identifying the smallest
and largest values of each descriptor that occurred in all of the
conformations retained from the conformational analysis. The
expected value for the descriptor was then taken as the mean of
the largest and smallest values found for that descriptor.

The results obtained when using uncertain features (see
below) were compared to those achieved using a single value
(the expected value). In addition to this, the latter results were
compared to the results obtained when implementing two
alternative ways of selecting a single value from the set
generated from multiple conformations: using the 3D geom-
etry initially generated by Corina for each compound, or using
the lowest-energy conformation from the conformational
analysis of each compound.

We recently provided a detailed description of the
methods employed when introducing uncertainty into en-
sembles of decision trees [16], so only a brief description of
them will be given below. For more details, see [16].

Uncertainty was introduced into the datasets in twoways: by
considering a uniform probability distribution across the range
of possible values (i.e., each value in the interval between the
smallest and largest observed values was assumed to be equally
probable), or by considering a normal distribution, where the
interval between the smallest and largest values was assumed to
correspond to the 95 % confidence interval. The learning
algorithm considered in this study included ensembles of deci-
sion trees [17] in the form of so-called random forests [18]. The
number of decision trees in each ensemble was 25. Two main

Fig. 1 Average accuracies of
the five methods when they
were applied to the eleven
datasets (datasets increase in
size from left to right)

Fig. 2 Average accuracy ranks
for the five methods vs. dataset
size
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approaches to handling uncertain numeric features during
model construction were considered: random (i.e., values were
sampled randomly from the distributions prior to tree genera-
tion) or range (i.e., fractions of compounds may be distributed
over multiple nodes during tree growth). Given that uncertainty
was introduced in twoways and that there were two approaches
to handling uncertain numeric features, there were four possible
approaches, which were correspondingly named the
“Ensemble-random-normal,” “Ensemble-random-uniform,”
“Ensemble-range-normal,” and “Ensemble-range-uniform”
methods. In addition, a strategy in which uncertainty was
ignored by simply considering the expected value of the distri-
bution, termed “Ensemble-ev”, was also implemented as the
baseline method. The predictive performance of each model
developed was assessed based on the average accuracy
resulting from tenfold cross-validation, and the models were
then ranked according to average accuracy (the best model was
ranked 1, the next best model was ranked 2, and so on).

Results and discussion

The investigation showed that differences in performance
(measured in terms of the accuracy resulting from a tenfold
cross-validation) among the five methods were rather small
for the datasets investigated here, as can be seen in Fig. 1.

A tendency for the Ensemble-range-normal method to be
slightly less well performing than the other methods utilized
in this study was noted and is depicted in Fig. 1. Also, the
methods Ensemble-range-uniform and Ensemble-ev appear
to slightly outperform the other methods for larger datasets
(Fig. 2).

This superiority of Ensemble-range-uniform and Ensemble-ev
is also seen in the ranks of the various methods (Fig. 2):
these are the two best-performing methods. Indeed,
the overall ranks across all eleven investigated datasets
(Fig. 3) show that the most accurate method is Ensemble-
range-uniform, followed by Ensemble-ev.

Fig. 3 Average accuracy ranks
for the five methods when
averaged over all datasets

Fig. 4 Number of rules for the
models derived by the five
methods based on the public
datasets
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Thus, it more advantageous to assume a uniform uncer-
tainty distribution and use the slightly more complex algo-
rithm in which objects (i.e., compounds) are partially
distributed according to range rather than to simply use the
midpoint (expected) values of the investigated descriptors.
Interestingly, the closely related Ensemble-range-normal
method is the worst performer for a clear majority of the
datasets, as shown in both Figs. 2 and 3. When the average
ranks were compared by performing a Friedman test
followed by a post hoc Nemenyi test [19], the differences
between the two best-performing methods (Ensemble-
range-uniform and Ensemble-ev) and the poorest method

(Ensemble-range-normal) were found to be significant at the
0.01 level. No other differences were significant at levels
below 0.05 according to this test. This difference in predic-
tive performance between the approaches employing normal
and uniform distributions may occur because the latter in-
creases the variance (diversity) among the base classifiers
compared to the former, which generally has a positive
effect on accuracy as long as this diversity does not mean
that the accuracies of the individual ensemble members are
too low.

It should also be noted that the most accurate method, the
Ensemble-range-uniform approach, produces models

Fig. 5 Average accuracies for
models generated from single-
valued descriptors by three
different methods

Fig. 6 Average accuracy ranks
for three different methods that
yield models using descriptors
with single values

J Mol Model (2013) 19:2679–2685 2683



containing many more rules (leaf nodes), on average ap-
proximately twice as many, than the models derived by any
of the other four methods, as shown in Fig. 4.

This may be explained by the fact that the weights of the
compounds that are distributed over multiple nodes will be
more evenly distributed when a uniform rather than normal
distribution of the uncertain features is assumed. With more
evenly distributed partitioning, tree growth can be expected
to continue for longer, resulting in more leaf nodes.

In order to investigate alternative ways of representing the
set of descriptor values from multiple conformations, the
method using the midpoint values in the intervals
(Ensemble-ev) was compared to a method utilizing descrip-
tors calculated from the initial Corina-generated 3-D geometry
(termed “Corina”) and a method that used only the lowest-
energy conformation (termed “mult_lowest_conf”). The re-
sults obtained when using only one descriptor value show
relatively small differences in performance among the
datasets, as shown in Fig. 5.

The rankings show slightly better performance for the
most elaborate approach (Ensemble-ev), which uses a set of
conformations to compute the midpoint value for each de-
scriptor (Fig. 6). Again, the overall difference between the
methods is not particularly large with respect to accuracy.
Indeed, according to the Friedman test [19], none of the
differences are significant at the 0.05 level.

This is similar to the observationmade byMuehlbachar et al.,
who stated that using multiple conformations and Boltzmann-
weighted descriptors did not improve the statistical quality when
deriving QSPR models for logPow, and that the additional effort
involved in generating multiple conformations rather than
models based on a single low-energy conformation was not
justified [24]. Hechinger et al. also studied the influences of the
computational method used for conformer generation and the
level of semi-empirical or ab initio quantum mechanical calcu-
lation performed on descriptor generation [25]. They, on the
other hand, concluded that the use of a single conformer for
descriptor generation may mean that the information associated
with the descriptor in question is not fully exploited.

In this work, we used uncertainty, which we defined as the
difference between the largest and smallest values of each
descriptor. A more physics-oriented approach would have been
to use the Boltzmann distribution of conformations. However,
the purpose of this investigation was to study the possible effect
of introducing uncertainty into descriptors derived from 3D
conformations on model quality. Using our approach (i.e.,
using the difference between the largest and smallest values
of a descriptor), we maximized the impact of the uncertainty
and thus the potential variation in model quality. Using a
Bolzmann-weighted distribution of descriptor values would,
at best, give the same range of uncertainty for a descriptor; in
many cases it would givemuch smaller variations. This, in turn,
would result in models derived from uncertain descriptors that

are much more similar to the models derived from descriptor
midpoint values (Ensemble-ev) than to the models obtained
using our approach to uncertainty, and would therefore limit
our ability to study the possible influence of using uncertain
descriptors on the statistical quality of models.

The apparent insensitivity of the descriptors to uncertainty
prompts the following questions: how different are the com-
puted Dragon 3D descriptors, and how large is the variation in
the most important descriptors in comparison with the varia-
tion of the other descriptors? To answer these questions, we
investigated the two largest public datasets (cox2 and dhfr) by
computing the normalized variation (i.e., the range in relation
to the average value) for the 25 most important descriptors in
the cox2 and dhfr models compared to the rest of the de-
scriptors. The average variations for the most important de-
scriptors and the other descriptors were 0.666 and 0.405,
respectively, for the cox2 dataset, and 1.525 and 0.798, re-
spectively, for the dhfr dataset. This shows that, for the latter
dataset, the most important descriptors can vary considerably
more than the less important ones without compromising
model quality (Fig. 1). Models with high predictive perfor-
mance were derived for both datasets.

Conclusions

The investigations presented in this work indicate that, when
performing in silico modeling of binary classification tasks, it is
possible to successfully incorporate three-dimensional informa-
tion into molecular descriptors by utilizing uncertain descrip-
tors. This can be achieved by applying the random forests
technique using uniform distributions in conjunction with par-
tially distributed objects (i.e., compounds) according to descrip-
tor range or by simply using the midpoint (expected value) for
each descriptor. To further speed up the analysis, if so desired,
this work indicates that models of almost the same quality as
those obtained using themore elaborate uncertainty scheme can
be obtained using a single conformation derived from Corina.
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